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FREE CONVECTION FROM A POINT HEAT SOURCE IN A STRATIFIED FLUID* 

A.V. KXSTOVICH and YU.D. CHASKECHRIN 

A non-stationary problem of free convection from a point heat source in 
a stratified fluid is considered. The system of equations is reduced to 
a single equation fnr a special scalar fun&ion whichdetermines the 
velocity field, and the temperature and salinity distribution. Relations 
are found connecting the spatial and temporal scales of the phenomenon 
with the parameters of the medium and the intensity of the heat source. 
The magnitude of the critical source intensity at which the fluid begins 
to move in a jet-flow mode is established. 

The structure of convective flows above the heat sources depends, 
in the stratified media, essentially on the nature of the stratification 
/I/ which may be caused by a change in the temperature of the medium 
/2, 31 or its salinity /4-7/, and by the form of the heat source. when 
a temperature gradient exists within the medium, an ascending jet forms 
above the point source, mushrooming outwards near the horizon of the 
hydrostatic equilibrium. In the case of a fluid with salinity gradient, 
the jetissurrounded by a sheet of descending salty fluid, and a regular 
system of annular convective cells is formed around it /l/. 

The height of the stationary jet computed in /2, 3f on the basis of 
conservative laws agrees with experiment. However, this approach does 
not enable the temperature and velocity distribution over the whole space 
to be found and does not enable the problem of determining the flow to 
be investigated. A stationary solution of the linearized convection 
equations /8/ does not correspond to detail to the observed flow pattern 
/l, 5-71. In this connection the study of the non-linear, non-stationary 
convection equations is of interest. 

The purpose of this paper is to construct a non-linear, non-stationary 
free convection equation above a point heat source, and to analyse the 
scales of the resulting structure and the critical conditions under which 
the flow pattern changes. 

1. Formulation of the problem. A system of non-stationary , non-linear equations of 
thermoconcentration convection in a stratified fluid in a cylindrical system of coordinates 
with a point heat source of strength P lying at the origin of coordinates and with the 
vertical z axis directed opposite to the force of gravity vector g, has the form 

p[$+ (u.v)u!-:-=--V~+~~A~+~Z~~V(V.U)+ 

p,,(@ --aT')y, +- + i7.(Su)= ksAS 

~+~.(~~)~~A~+~~~(~) 

-g fV.(pu)_ _y&%qq 

p = PO (1 + cis - co), s = s, (2) + S’ 

T = T” (z) + T’, &(4=&(1+&-j 

(1.1) 

Here u is the velocity ofthemedium, p is the pressure behind the residue of the hydro- 
static pressure, S,S(z), S are the total, stratified and additional salinity, T, T (2). T' 
are the total, stratified and excess temperature, SW T,* PO are the salinity, temperature 
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and density of the medium at the level z = 0, p is the density of the medium, B? a, XV v,ks 
are the coefficients of saline and temperature expansions, thermal diffusivity, kinematic 
viscosity and salt diffusion, e, is the heat capacity of the medium at constant pressure, 
and As,& are the scales of the salt and temperature stratification. The initial and 
boundary conditions for the functions u, p,S’, T’ are homogeneous. 

Eqs.(l.l) imply that the condition that the velocity field is solenoidal 

V-u = -Ah, h = fiksS’ - axT’ 0.2) 

does not hold. A velocity field which is axisymmetric , admits of a representation of the 
form /9/ 

(1.3) 

where w,, wz is the radial and vertical component of the solenoidal part of the velocity, 
and cp,$ are unknown functions of the coordinates and time. 

The components of the total velocity vector can be written in the form 

Eqs.(l.l) contain non-linear terms which play an important part in forming the flow. 
Using the fact that the solenoidal part of the velocity is the main contributor towards the 
transfer, we shall use the following approximation: 

(u.V)A=(w.V)A 
where A is either a scalar (S’, T’,p), or a vector (u) quantity. Using the Navier-Stokes 
equations and expressions (1.4) , we obtain the function 

Using relations (1.2) and (1.5), we can eliminate S'and T’ from the system of initial 
equations, thus reducing it to the system 

Dh=+(;+ ) w.V (F--vf)- &+-+f+ 
Q-e(t), (&+,.,-,A), +T+ 

$(-k +w.V-,A)(F-DD,.f)+yA,f+ 

Q (ks - x) w 0 (t) 

& D+A(;-vA) 

(l.(i) 

Substituting the expression for h from the first equation of (1.6) into the second 
equation, we obtain a single equation for the unknown function f, which determines u, T’, S’ 
in accordance with (1.2), (l-4)-(1.6) 

[(.; +w.V)D-1-x-ks]($+w4’)(F-DD,f) + 

ksXA(F---vf)+ &++ 
( ) 

g&f - 

( 
.& + -&) g($ + w.0)bA.f = 

ge [ks ~e(t)+~(~+w.V)(rP+Il)-r/De(~)] 

(1.7) 

where D-1 is an operator inverse to D. 
To simplify the subsequent analysis, we must reduce Eq.(1.7) to its dimensionless form. 

We choose here, as the scales of the distance d and time z, the radius of the ascending jet 
generated by the heat source, and the time of its formation. Thus we must consider the 
problem of determining d and r during the initial stages of the process. 
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2. Determining the spatial and time scales. Remembering that the stratification 
of the fluid, diffusion of salt and higher-order non-linear terms of the system (1.6) have 
little effect on the nature of the flow during its initial stages, we can obtain a system 
describing the process in the first instances after the heat source is switched on 

{&+w.v)T’_XAT’+$~e(“) @A) 

AT’ z 

Let us determine d and z as dimensions of the domains of space and time in which the 
solution of system (2.1) can be represented in the form of a temperature distribution, in the 
case when (2.1) contains no convection terms, supplemented by the corrections generated by 
the presence of these convection terms, In accordance with this we shall expand T'in the 
series 

where a is a dimensionless parameter characterizing the contribution of the convection terms 
of system (2.1) towards the temperature distribution. At the initial instants the contribution 
will be larger the greater the source strength. 

The proLess of heating the fluid causes buoyancy and leads to the appearance of a con- 
vective flow. The convection term has the form 

W~~T’=~W,.~T,‘+EZ(W,.VT,‘+Wl.VT,’)_t... (2.3) 
Substituting (2.2) and (2.3) into (2.1), equating terms of like power in E and taking 

(1.4) into account, we obtain a sequence of systems of equations, from which we obtain the 
te,ms of the expansion (2.2) 

where fi is the i-th term of the expansion of f in powers e. 
The conditions ensuring the validity of relations (2.2)-(2.4) have the form 

Since E can take arbitrary values, it 
together with (2.5) : 

etc. 
The critical values ofthedistance and 

hold, represent the required scales and are 

follows that the following conditions must hold 

(2.4) 

time &and s, for whichconditions (2.6) no longer 
found from the relations 

with (~2 + iP)% = de, t = z*. Using (2.4), and shall write (2.7) in the specific form 

(2.7) 
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(2m)2n 
- ,,$l+, p (Sj- 2% 

(- 1)"(2#" a" 
6n"* ap" (~)IPzl]=i 

E (I) = exp (3) erfc (z), m = Vzd,l(p.+)'l~ 

As we have already assumed , at the initial instants the influence of convection terms 
and corrections to the temperature distribution are larger, the greater the source strength. 
Here the ratio of the convection to the diffusion terms and the ratio of the correction &Tl' 
to T,' must be directly proportional to the source strength. But then we find that when 
t=r, and (r* + z2)'/. = d*, the left-hand sides of (2.8) must be independent of the source 
strength, and this can be arrived at unequivocally if we assume that the quantity m is in- 
dependent of the source strength and r,, -P-l, whereupon d, - P-'1~. 

Using the parameters 5, g and X of the problem, we can construct quantities with 
dimensions of time and distance, behaving as P-1 and P+, as follows: 

r* = A (QX-%g%)-' X'hg-'h (2.9) 
d, = B (QX-%g'")-'1% X'/'g-'/~ 

Substituting (2.9) into (2.8) and solving the resulting systems for A and B, we obtain 
A ,z 104, B z 5.102. 

The numerical computations for P = 4,0 w, I = 1,5.10-' m2/sec and c,, = 4.103 J/kg - K, gave 
the following results for the radius of the jet and time of its formation: r,=.O,i set, 

d, ~5.10" m. These values are close to the experimentalvalues.The computed value of the 
excess temperature of the fluid t=T, at a distance d,i2 from the source, i.e. in the middle 
part of the volume of the fluid beginning to move convectively, is equal to AT'-30K while 
experiment gives AT'=40 K/6/. 

3. An estimate of the critical value of the strength of the heat source. 
When the convection terms in expansion (2.2) begin to make a major contribution to the 
temperature distribution as compared with that of diffusion terms, i.e. when s takes a value 
of unity, the source strength reaches its critical value, given by the relation 

P*-:Z.$ 
(3.1) 

In an aqueous solution of common salt with a volume concentration of S, = 5~10-2kg/m3, 
x = 1,5.10-' m2/sec, a = 2,7.1O-4 K-', c, = 4~10~ J/kg . KJ, PO = 10’ kg/m3, as the critical 
source strength P, ~0~03 W, which corresponds to the following value of the global Rayleigh 
number: 

No convective motion was observed in the experiments for Ra+<60 /6/ 

4. Determining the scale of the function f. We choose, as the scale f* of f, the 
value of the maximum deviation from zero of the quantity f obtained at the point M of the 
space, where the sufficient conditions of existence of an extremum hold. 

Let us determine f* at the minimum point, since in this casethe,fluid flows upwards. 
The conditions af/di- 1~ = 0 and r-'aflar [M> 0 can be satisfied simultaneously only when 7~ = 0. 
Since the convective motion begins at the instant t = r* at a distance (r2 + z*)'/* = d, from 
the heat source and the radial coordinate of the point M is zero rM = 0, we find that 
ZM = d,. 

Taking as f, the value of the first term of the expansion of the function f at the point 
M, i.e. 

we obtain 
* 

f* = _ A- (QX%g-'/a)'/, 
4nB 

where A and B have been found before. 
The form of the function f. indicates that the heat source generates, at the initial 

instant, a dipole of velocity sources of intensity p = X-'$?l~ta, independent of the source 
strength at the instant t = t*. 

Using the scales obtained, we reduce Eq.Cl.7) to the dimensionless form by introducing 
the dimensionless time t’, coordinates r'and z', and function f' 
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t = z,t’, r = d,r’, z = d,z’, f = f.+f' (4.1) 

Substituting (4.1) into (1.7) we obtain (neglecting the primes in the dimensionless 
variables (4.1)) 

y [(&+ yw.V)U-‘-X-ks]($ + vw.V)(yF-D,f)- 

y&A (9 - W + Y (+ + $1 gc.q%! - 

y ~+~)gr,l($1-yw.V)D-‘A,f- ( 
-& sign (P) w.VD-' (r2 + z*)-‘/z 0 (t) $ = 

sign(P) [ ks YdpJ (t) + !$ ($ + ,2)-l%] $ 

(4.2) 

F A" 
y=--4,7 

XT* 
X==d*a, k,=!!$, VT* 

* v=d*a 

All spatial derivatives in (4.2) are taken over the dimensionless coordinates. The 
initial and boundary conditions on f are obtained by recalculating the initial and boundary 
conditions for u,p,S', T’ using the relations connecting the dimensionless and the initial 
physical variables. 

Eq.(4.2) has the following properties. 
lo. The solution is not syrmaetrical about 2 = 0, i.e. the distribution of the salinity 

and temperature and the velocity field are different in the regions above and below the heat 
source, and this agrees with experiment /I, 5-7/. The linearized system yields a symmetrical 
solution /8/. 

2O. When the sign of s and the source strength change simultaneously, the solution of 
(4.2) will not change, but the vertical component of the velocity will change its sign, i.e. 
if the heat "sink" is turned on, a flow pattern identical to that above the heat source will 
form below the sink. 

3O. The source strength determines directly the degree of non-linearity of the process, 
and it will therefore affect the flow structure and stability. 

Further study of the process by which the flow structure is formed involves investigating 
how the properties of Eq.(4.2) depend on the source strength. 
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